Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 183: 114200, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029872

RESUMO

2-tert-butyl-1,4-benzoquinone (TBBQ), a degradation product of lipid antioxidant Tert-Butylhydroquinone (TBHQ), is a new hazardous compound in foods. This study investigated whether co-ingestion of dietary protein and TBBQ can alleviate the toxicity of TBBQ. The results indicated that soy protein isolate, whey protein isolate, and rice protein significantly reduced the residual amount of TBBQ during simulated gastrointestinal digestion. This result was attributed to the excellent elimination capacity of the released amino acids for TBBQ through formation of adducts. Among 20 amino acids, histidine, lysine, glycine, and cysteine showed better elimination capacity for TBBQ; they can eliminate 92.1%, 89.4%, 86.1%, and almost 100%, respectively, in 5 min at pH 8.0. Further study indicated that amino acids with lower ionization constant exhibited greater TBBQ elimination capacity. In addition, incubation of the cells with 50 µM TBBQ for 12 h decreased the cell viability to 28.95 ± 3.25%; while amino acids intervention was involved in the alleviation of TBBQ cytotoxicity via decreasing ROS. Particularly, cysteine showed 100 times more TBBQ detoxifying capacity than other amino acids. This work could provide a theoretical basis for the potential application of amino acids for detoxifying TBBQ in the food industry.


Assuntos
Aminoácidos , Cisteína , Cisteína/farmacologia , Proteínas Alimentares , Digestão
2.
J Phys Chem A ; 127(40): 8437-8446, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37773038

RESUMO

Machine learning models are widely used in science and engineering to predict the properties of materials and solve complex problems. However, training large models can take days and fine-tuning hyperparameters can take months, making it challenging to achieve optimal performance. To address this issue, we propose a Knowledge Enhancing (KE) algorithm that enhances knowledge gained from a lower capacity model to a higher capacity model, enhancing training efficiency and performance. We focus on the problem of predicting the bandgap of an unknown material and present a theoretical analysis and experimental verification of our algorithm. Our experiments show that the performance of our knowledge enhancement model is improved by at least 10.21% compared to current methods on OMDB datasets. We believe that our generic idea of knowledge enhancement will be useful for solving other problems and provide a promising direction for future research.

3.
Front Nutr ; 10: 1121826, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998909

RESUMO

Congenital heart defects (CHDs) are congenital abnormalities involving the gross structures of the heart and large blood vessels. Environmental factors, genetic factors and their interactions may contribute to the pathogenesis of CHDs. Generally, trace elements can be classified into essential trace elements and non-essential trace elements. Essential trace elements such as copper (Cu), zinc (Zn), iron (Fe), selenium (Se), and manganese (Mn) play important roles in human biological functions such as metabolic function, oxidative stress regulation, and embryonic development. Non-essential trace elements such as cadmium (Cd), arsenic (As), lead (Pb), nickle (Ni), barium (Ba), chromium (Cr) and mercury (Hg) are harmful to health even at low concentrations. Recent studies have revealed the potential involvement of these trace elements in the pathogenesis of CHDs. In this review, we summarized current studies exploring exposure to essential and non-essential trace elements and risks of CHDs, in order to provide further insights for the pathogenesis and prevention of CHDs.

4.
Curr Res Food Sci ; 6: 100438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36660303

RESUMO

To explore the effect and its mechanism of alkali-assisted phosphorylation on the functional properties of Camellia Oleifera seeds cake glutelin (CSCG), CSCG was treated with different concentration of sodium trimetaphosphate (STMP, 1.0, 2.0, 3.0, 4.0, and 5%, w/v) in different pH environment (3.0, 5.0, 7.0, 9.0, and 11.0). The results showed that alkali assist improved the phosphorylation degree of CSCG, and the optimum pH value is 9.0. FT-IR and XPS confirmed the successful modification of phosphate groups on CSCG through covalent interaction. Alkali-assisted phosphorylation decreased the particle size and increased electronegativity of CSCG, as well as changed in its surface hydrophobicity, crystallinity, and intrinsic fluorescence. All these changes of protein structure triggered by alkali-assisted phosphorylation led to the improvement of water solubility, water/oil absorption capacity, emulsifying ability, foamability, and in vitro digestibility of CSCG. This work could provide a theoretical basis for industrial production of CSCG with excellent functional properties.

5.
ACS Biomater Sci Eng ; 6(6): 3550-3562, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33463170

RESUMO

Radiotherapy (RT) is a major treatment method for non-small-cell lung cancer (NSCLC), and development of new treatment modality is now critical to amplify the negative effects of RT on tumors. In this study, we demonstrated a nanoparticle-loaded block copolymer micellar system for cancer hyperthermia treatment (HT) that can be used for synergistic therapy under alternating magnetic field (AMF) and radiation field. Block copolymer micelles (polyethylene glycol-block-polycaprolactone, or PEG-PCL) containing hyaluronic acid (HA) and Mn-Zn ferrite magnetic nanoparticles (MZF) were fabricated via a two-step preparation. HA-modified Mn-Zn ferrite magnetic nanoparticles (MZF-HA) can be enriched in CD44 highly expressing tumor cells, such as A549 (human lung adenocarcinoma cell line), through an active targeting mechanism via receptor-ligand binding of HA and CD44 (HA receptor). MZF can generate thermal energy under an AMF, leading to a local temperature increase to approximately 43 °C at tumor sites for mild HT, and the increased tumor oxygenation can enhance the therapeutic effect of RT. In vitro experiments show that MZF-HA is able to achieve excellent specific targeting performance toward A549 cells with excellent biocompatibility as well as enhanced therapy performance under HT and RT in vitro by apoptosis flow cytometry. In the A549 subcutaneous tumor xenografts model, MRI confirms the enrichment of MZF-HA in tumor, and hypoxia immunohistochemistry analysis (IHC) proved the increased tumor oxygenation after HT. Furthermore, the tumor volume decreases to 49.6% through the combination of HT and RT in comparison with the 58.8% increase of the untreated group. These results suggest that the application of MZF-HA is able to increase the therapeutic effect of RT on A549 and can be used for further clinical NSCLC treatment evaluation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Hipertermia Induzida , Neoplasias Pulmonares , Nanopartículas de Magnetita , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Compostos Férricos , Humanos , Hipertermia , Neoplasias Pulmonares/radioterapia , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...